On minimal ideal triangulations of cusped hyperbolic 3‐manifolds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Inequality for Polyhedra and Ideal Triangulations of Cusped Hyperbolic 3-manifolds

It is not known whether every noncompact hyperbolic 3-manifold of finite volume admits a decomposition into ideal tetrahedra. We give a partial solution to this problem: Let M be a hyperbolic 3-manifold obtained by identifying the faces of n convex ideal polyhedra P1, . . . , Pn. If the faces of P1, . . . , Pn−1 are glued to Pn, then M can be decomposed into ideal tetrahedra by subdividing the ...

متن کامل

Degenerations of ideal hyperbolic triangulations

Let M be the interior of a compact, orientable 3–manifold with non-empty boundary a disjoint union of tori, and T be an ideal triangulation of M . The affine algebraic set D(M ; T ), a subset of which parameterises (incomplete) hyperbolic structures obtained on M using T , is defined and compactified by adding projective classes of transversely measured singular codimension–one foliations of (M...

متن کامل

The Minimal Volume Orientable Hyperbolic 2-cusped 3-manifolds

We prove that the Whitehead link complement and the (−2, 3, 8) pretzel link complement are the minimal volume orientable hyperbolic 3-manifolds with two cusps, with volume 3.66... = 4 × Catalan’s constant. We use topological arguments to establish the existence of an essential surface which provides a lower bound on volume and strong constraints on the manifolds that realize that lower bound.

متن کامل

Ideal triangulations of finite volume hyperbolic 3-manifolds

Any non compact finite volume hyperbolic 3-manifold has a finite cover which admits a nondegenerate ideal triangulation. As an application, we show that the volume of those manifolds is always a critical value of a function defined from the Lobachevskii function.

متن کامل

Commensurators of Cusped Hyperbolic Manifolds

This paper describes a general algorithm for finding the commensurator of a non-arithmetic hyperbolic manifold with cusps, and for deciding when two such manifolds are commensurable. The method is based on some elementary observations regarding horosphere packings and canonical cell decompositions. For example, we use this to find the commensurators of all non-arithmetic hyperbolic once-punctur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Topology

سال: 2019

ISSN: 1753-8416,1753-8424

DOI: 10.1112/topo.12127